263 research outputs found

    Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores

    Get PDF
    Breast and prostate cancer risks; Pathogenic variantRiscos de cĂ ncer de mama i prĂČstata; Variants patogĂšniquesRiesgos de cĂĄncer de mama y prĂłstata; Variantes patogĂ©nicasBackground Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers. Methods 483 BRCA1 and 1318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were 3 versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen receptor (ER)–negative (PRSER-), or ER-positive (PRSER+) breast cancer risk. Results PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07 to 1.83) for BRCA1 and 1.33 (95% CI = 1.16 to 1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for BRCA1 (OR = 1.73, 95% CI = 1.28 to 2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34 to 1.91) carriers. The estimated breast cancer odds ratios were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions. Conclusions Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and informing clinical management.The CIMBA data management and data analysis were supported by Cancer Research UK grants C12292/A20861 and PPRPGM-Nov20\100002. The research leading to these results has received funding from the Italian Association for Cancer Research (AIRC) under IG 2018 - ID. 21389 and the Italian League for the Fight Against Cancer (LILT) under IG 2019 projects, P.I. Ottini Laura and Italian Ministry of Education, Universities and Research-Dipartimenti di Eccellenza-L. 232/2016. CIMBA: GCT is a National Health and Medical Research Council (NHMRC) Research Fellow. iCOGS and OncoArray data: the European Community’s Seventh Framework Programme under grant agreement No. 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (NIH) (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer (CRN-87521), and the Ministry of Economic Development, Innovation and Export Trade (PSR-SIIRI-701), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The Personalized Risk Stratification for Prevention and Early Detection of Breast Cancer (PERSPECTIVE) and PERSPECTIVE I&I projects were supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the Ministry of Economy and Innovation through Genome QuĂ©bec, and The Quebec Breast Cancer Foundation and the Ontario Research Fund. Breast Cancer Family Registry (BCFR): UM1 CA164920 from the National Cancer Institute (NCI). Baltic Familial Breast Ovarian Cancer Consortium (BFBOCC): Lithuania (BFBOCC-LT): Research Council of Lithuania grant SEN-18/2015. Beth Israel Deaconess Medical Center (BIDMC): Breast Cancer Research Foundation. BRCA-gene mutations and breast cancer in South African women (BMBSA): Cancer Association of South Africa (PI Elizabeth J. van Rensburg). Spanish National Cancer Centre (CNIO): Spanish Ministry of Health PI16/00440 supported by Fondo Europeo de Desarrollo Regional (FEDER) funds, the Spanish Ministry of Economy and Competitiveness (MINECO) SAF2014-57680-R and the Spanish Research Network on Rare diseases (CIBERER). City of Hope - Clinical Cancer Genomics Community Research Network (COH-CCGCRN): Research reported in this publication was supported by the NCI of the NIH under grant No. R25CA112486, and RC4CA153828 (PI: J. Weitzel) from the NCI and the Office of the Director, NIH. CONsorzio Studi ITaliani sui Tumori Ereditari Alla Mammella (CONSIT TEAM): Associazione Italiana Ricerca sul Cancro (AIRC; IG2014 No.15547) to P. Radice. Funds from Italian citizens who allocated the 5x1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ‘5x1000’) to S. Manoukian. Associazione CAOS Varese to M.G. Tibiletti. AIRC (IG2015 No.16732) to P. Peterlongo. National Centre for Scientific Research Demokritos (DEMOKRITOS): European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program of the General Secretariat for Research & Technology: SYN11_10_19 NBCA. Investing in knowledge society through the European Social Fund. German Cancer Research Center (DFKZ): German Cancer Research Center. Epidemiological Study of Familial Breast Cancer (EMBRACE): Cancer Research UK Grants C1287/A10118 and C1287/A11990. D. Gareth Evans and Fiona Lalloo are supported by an National Institute for Health Research (NIHR) grant to the Biomedical Research Centre, Manchester. The Investigators at The Institute of Cancer Research and The Royal Marsden National Health Service (NHS) Foundation Trust are supported by an NIHR grant to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. Ros Eeles and Elizabeth Bancroft are supported by Cancer Research UK Grant C5047/A8385. Ros Eeles is also supported by NIHR support to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. Fox Chase Cancer Center (FCCC): The University of Kansas Cancer Center (P30 CA168524) and the Kansas Bioscience Authority Eminent Scholar Program. AKG was in part funded by the NCI (R01 CA214545 and R01 CA140323), The Kansas Institute for Precision Medicine (P20 GM130423), and the Kansas Bioscience Authority Eminent Scholar Program. A.K.G. is the Chancellors Distinguished Chair in Biomedical Sciences Professor. FundaciĂłn PĂșblica Galega de Medicina XenĂłmica (FPGMX): FISPI05/2275 and Mutua Madrileña Foundation (FMMA). German Familial Breast Group (GC-HBOC): German Cancer Aid (grant No. 110837, Rita K. Schmutzler) and the European Regional Development Fund and Free State of Saxony, Germany (LIFE—Leipzig Research Centre for Civilization Diseases, project No. 713-241202, No. 713-241202, No. 14505/2470, and No. 14575/2470). Genetic Modifiers of cancer risk in BRCA1/2 mutation carriers (GEMO): Ligue Nationale Contre le Cancer; the Association “Le cancer du sein, parlons-en!” Award, the Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program and the French National Institute of Cancer (INCa grants 2013-1-BCB-01-ICH-1 and SHS-E-SP 18-015). Georgetown University (GEORGETOWN): the Non-Therapeutic Subject Registry Shared Resource at Georgetown University (NIH/NCI grant P30-CA051008), the Fisher Center for Hereditary Cancer and Clinical Genomics Research, and Swing Fore the Cure. Ghent University Hospital (G-FAST): Bruce Poppe is a senior clinical investigator of FWO. Mattias Van Heetvelde obtained funding from IWT. Hospital Clinico San Carlos (HCSC): Spanish Ministry of Health PI15/00059, PI16/01292, and CB-161200301 CIBERONC from ISCIII (Spain), partially supported by European Regional Development FEDER funds. Helsinki Breast Cancer Study (HEBCS): Helsinki University Hospital Research Fund, the Finnish Cancer Society and the Sigrid Juselius Foundation. Hereditary Breast and Ovarian cancer study the Netherlands (HEBON): the Dutch Cancer Society grants NKI1998-1854, NKI2004-3088, NKI2007-3756, the Netherlands Organization of Scientific Research grant NWO 91109024, the Pink Ribbon grants 110005 and 2014-187.WO76, the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI) grant NWO 184.021.007/CP46 and the Transcan grant JTC 2012 Cancer 12-054. HEBON thanks the registration teams of Dutch Cancer Registry (IKNL; S. Siesling, J. Verloop) and the Dutch Pathology database (PALGA; L. Overbeek) for part of the data collection. Study of Genetic Mutations in Breast and Ovarian Cancer patients in Hong Kong and Asia (HRBCP): Hong Kong Sanatorium and Hospital, Dr Ellen Li Charitable Foundation, The Kerry Group Kuok Foundation, National Institute of Health1R 03CA130065, and North California Cancer Center. Molecular Genetic Studies of Breast- and Ovarian Cancer in Hungary (HUNBOCS): Hungarian Research Grants KTIA-OTKA CK-80745 and NKFI_OTKA K-112228. Institut CatalĂ  d’Oncologia (ICO): The authors would like to particularly acknowledge the support of the AsociaciĂłn Española Contra el CĂĄncer (AECC), the Instituto de Salud Carlos III (organismo adscrito al Ministerio de EconomĂ­a y Competitividad) and “FEDER, una manera de hacer Europa” (PI10/01422, PI13/00285, PIE13/00022, PI15/00854, PI16/00563 and CIBERONC) and the Institut CatalĂ  de la Salut and Autonomous Government of Catalonia (2009SGR290, 2014SGR338 and PERIS Project MedPerCan). International Hereditary Cancer Centre (IHCC): PBZ_KBN_122/P05/2004. Iceland Landspitali – University Hospital (ILUH): Icelandic Association “Walking for Breast Cancer Research” and by the Landspitali University Hospital Research Fund. INterdisciplinary HEalth Research Internal Team BReast CAncer susceptibility (INHERIT): Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program—grant No. CRN-87521 and the Ministry of Economic Development, Innovation and Export Trade—grant No. PSR-SIIRI-701. Istituto Oncologico Veneto (IOVHBOCS): Ministero della Salute and “5x1000” Istituto Oncologico Veneto grant. Portuguese Oncology Institute-Porto Breast Cancer Study (IPOBCS): Liga Portuguesa Contra o Cancro. Kathleen Cuningham Consortium for Research into Familial Breast Cancer (kConFab): The National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia. Korean Hereditary Breast Cancer Study (KOHBRA): the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), and the National R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (HI16C1127; 1020350; 1420190). Mayo Clinic (MAYO): NIH grants CA116167, CA192393 and CA176785, an NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), and a grant from the Breast Cancer Research Foundation. McGill University (MCGILL): Jewish General Hospital Weekend to End Breast Cancer, Quebec Ministry of Economic Development, Innovation and Export Trade. Marc Tischkowitz is supported by the funded by the European Union Seventh Framework Program (2007Y2013)/European Research Council (Grant No. 310018). Modifier Study of Quantitative Effects on Disease (MODSQUAD): MH CZ—DRO (MMCI, 00209805), MEYS—NPS I—LO1413 to LF, and by Charles University in Prague project UNCE204024 (MZ). Memorial Sloane Kettering Cancer Center (MSKCC): the Breast Cancer Research Foundation, the Robert and Kate Niehaus Clinical Cancer Genetics Initiative, the Andrew Sabin Research Fund and a Cancer Center Support Grant/Core Grant (P30 CA008748). Women’s College Research Institute Hereditary Breast and Ovarian Cancer Study (NAROD): 1R01 CA149429-01. National Cancer Institute (NCI): the Intramural Research Program of the US NCI, NIH, and by support services contracts NO2-CP-11019-50, N02-CP-21013-63 and N02-CP-65504 with Westat, Inc, Rockville, MD. National Israeli Cancer Control Center (NICCC): Clalit Health Services in Israel, the Israel Cancer Association and the Breast Cancer Research Foundation (BCRF), NY. N.N. Petrov Institute of Oncology (NNPIO): the Russian Foundation for Basic Research (grants 17-54-12007, 17-00-00171 and 18-515-12007). NRG Oncology: U10 CA180868, NRG SDMC grant U10 CA180822, NRG Administrative Office and the NRG Tissue Bank (CA 27469), the NRG Statistical and Data Center (CA 37517) and the Intramural Research Program, NCI. The Ohio State University Comprehensive Cancer Center (OSUCCG): Ohio State University Comprehensive Cancer Center. UniversitĂ  di Pisa (PBCS): AIRC [IG 2013 N.14477] and Tuscany Institute for Tumors (ITT) grant 2014-2015-2016. South East Asian Breast Cancer Association Study (SEABASS): Ministry of Science, Technology and Innovation, Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation. Sheba Medical Centre (SMC): the Israeli Cancer Association. Swedish Breast Cancer Study (SWE-BRCA): the Swedish Cancer Society. University of Chicago (UCHICAGO): NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA125183), R01 CA142996, 1U01CA161032 and by the Ralph and Marion Falk Medical Research Trust, the Entertainment Industry Fund National Women’s Cancer Research Alliance and the Breast Cancer research Foundation. OIO is an American Cancer Society (ACS) Clinical Research Professor. University of California Los Angeles (UCLA): Jonsson Comprehensive Cancer Center Foundation; Breast Cancer Research Foundation. University of California San Francisco (UCSF): UCSF Cancer Risk Program and Helen Diller Family Comprehensive Cancer Center. UK Familial Ovarian Cancer Registry (UKFOCR): Cancer Research UK. University of Pennsylvania (UPENN): NIH (R01-CA102776 and R01-CA083855); Breast Cancer Research Foundation; Susan G. Komen Foundation for the cure, Basser Research Center for BRCA. Cancer Family Registry University of Pittsburg (UPITT/MWH): Hackers for Hope Pittsburgh. Victorian Familial Cancer Trials Group (VFCTG): Victorian Cancer Agency, Cancer Australia, National Breast Cancer Foundation. Women’s Cancer Program at Cedars-Sinai Medical Center (WCP): Dr Karlan is funded by the ACS Early Detection Professorship (SIOP-06-258-01-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124. TN-D is a recipient of a Career Development Fellow from the National Breast Cancer Foundation (Australia, ECF-17-001)

    Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers

    Get PDF
    Background:\textbf{Background:} Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1\textit{BRCA1} or BRCA2\textit{BRCA2}. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods:\textbf{Methods:} We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through populationbased GWAS: for BC (overall, estrogen receptor [ER]–positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1\textit{BRCA1} and 8211 BRCA2\textit{BRCA2} carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results:\textbf{Results:} The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1\textit{BRCA1} carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, PP = 8.2 ×\times 10−53^{-53}). In BRCA2\textit{BRCA2} carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, PP = 7.2 ×\times 10−20^{-20}). The OC PRS was strongly associated with OC risk for both BRCA1\textit{BRCA1} and BRCA2\textit{BRCA2} carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom AR deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2\textit{BRCA2} carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions:\textbf{Conclusions:} BC and OC PRS are predictive of cancer risk in BRCA1\textit{BRCA1} and BRCA2\textit{BRCA2} carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management.Cancer Research U

    Effects of BRCA2 cis-regulation in normal breast and cancer risk amongst BRCA2 mutation carriers.

    Get PDF
    INTRODUCTION: Cis-acting regulatory single nucleotide polymorphisms (SNPs) at specific loci may modulate penetrance of germline mutations at the same loci by introducing different levels of expression of the wild-type allele. We have previously reported that BRCA2 shows differential allelic expression and we hypothesize that the known variable penetrance of BRCA2 mutations might be associated with this mechanism. METHODS: We combined haplotype analysis and differential allelic expression of BRCA2 in breast tissue to identify expression haplotypes and candidate cis-regulatory variants. These candidate variants underwent selection based on in silico predictions for regulatory potential and disruption of transcription factor binding, and were functionally analyzed in vitro and in vivo in normal and breast cancer cell lines. SNPs tagging the expression haplotypes were correlated with the total expression of several genes in breast tissue measured by Taqman and microarray technologies. The effect of the expression haplotypes on breast cancer risk in BRCA2 mutation carriers was investigated in 2,754 carriers. RESULTS: We identified common haplotypes associated with differences in the levels of BRCA2 expression in human breast cells. We characterized three cis-regulatory SNPs located at the promoter and two intronic regulatory elements which affect the binding of the transcription factors C/EBPα, HMGA1, D-binding protein (DBP) and ZF5. We showed that the expression haplotypes also correlated with changes in the expression of other genes in normal breast. Furthermore, there was suggestive evidence that the minor allele of SNP rs4942440, which is associated with higher BRCA2 expression, is also associated with a reduced risk of breast cancer (per-allele hazard ratio (HR) = 0.85, 95% confidence interval (CI) = 0.72 to 1.00, P-trend = 0.048). CONCLUSIONS: Our work provides further insights into the role of cis-regulatory variation in the penetrance of disease-causing mutations. We identified small-effect genetic variants associated with allelic expression differences in BRCA2 which could possibly affect the risk in mutation carriers through altering expression levels of the wild-type allele.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Identification of six new susceptibility loci for invasive epithelial ovarian cancer

    Get PDF
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers
    • 

    corecore